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Abstract 
 

The Unified Modeling Language (UML) supports a 
wide range of diagrams for modeling software develop-
ment concerns. UML diagrams are independent but con-
nected; their meta-model describes them under a common 
roof. Despite the advances of UML, we found that the 
problem of ensuring consistency between UML diagrams 
has not been solved. In the past years, we have developed 
an approach for automated consistency checking, called 
VIEWINTEGRA. Our approach provides excellent support 
for active (preventive) and passive (detective) consistency 
checking. We make use of consistent transformation to 
translate diagrams into interpretations and we use consis-
tency comparison to compare those interpretations to 
other diagrams. Our approach was applied to a number 
of applications where we found the separation of trans-
formation and comparison to be highly beneficial in ad-
dressing consistency-checking scalability & usability is-
sues. This paper introduces our UML-based transforma-
tion framework, discusses how it aids comparison, and 
demonstrates how it improves consistency checking. 
 

1. Introduction 
 

Models and diagrams are useful in separating concerns 
and handling complexity by providing different view-
points. Diagrams have in common that they break up 
software development into smaller, more comprehensible 
pieces utilizing a divide and conquer strategy. These 
pieces are related in the system they describe and, com-
bined, they form a model description of a system [2].  

The major drawback of “diagram-centric” software en-
gineering is that development concerns cannot be truly 
investigated individually since they tend to affect one an-
other. If a set of issues about a software system is investi-
gated, each through its own set of diagrams then their 
combined correctness requires that common assumptions 
and definitions within those diagrams are recognized and 
maintained in a consistent fashion. Consistency is compli-
cated by the very advantage of diagrams – their separa-
tion. Although the separation of diagrams is beneficial in 

supporting separate concerns, it is also bad because it in-
duces duplication (redundancy) of model information. 
Explicit mechanisms are required to ensure the consis-
tency of all redundant information across all diagrams; but 
conceptual differences in meaning and language are bar-
rier to consistency checking and complicate matters.  

This work introduces a transformation-based approach 
to consistency checking. We discuss our approach in con-
text of various UML diagram types (i.e., class, sequence, 
collaboration, object, statechart diagrams) at different 
levels of abstraction (i.e., high-level versus low-level dia-
grams). Our approach, called VIEWINTEGRA, is primarily 
aimed at detecting inconsistencies after they have been 
introduced. We take the stance that software diagrams are 
inherently ambiguous and inconsistencies often cannot be 
avoided [2,4].  

In this paper, we will emphasize the important nature 
of transformation as a means of improving consistency-
checking scalability. It is our finding that consistency 
checking between “n” diagrams does not require “n*n” 
number of transformations and/or comparisons but sig-
nificantly fewer. It is also our finding that the separation 
of transformation and comparison makes comparison rules 
(consistency checking rules) simpler and less in numbers. 
Furthermore, separate transformation methods can also be 
used independently of consistency checking for reverse 
engineering and other needs. 

 

2. The VIEWINTEGRA Approach 
 

Diagrams are self-contained in describing individual 
aspects of software systems. No diagram is replaceable by 
any other diagram but diagrams are not independent of 
one another either. For instance, a sequence diagram de-
scribes interactions among objects whose types are 
classes. A sequence diagram thus is not independent from 
a class diagram. Similarly, a class diagram describes in-
teractions that must also be captured in refinements. Ab-
stract and refined diagrams are thus not independent from 
one another. In fact there are mutual dependencies be-
tween most diagrams implying that there is substantial 
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information redundancy. Unfortunately, redundancies 
imply the possibility of inconsistencies.  

In an ideal world, diagrams are tightly integrated to 
avoid inconsistencies. In reality such tight integration is 
infeasible and often impractical [2]. This is especially then 
the case when redundancies are obscure and do not follow 
simple one-to-one mappings. There are also non-technical 
reasons in favor of allowing inconsistencies to happen. 
For instance, there are situations where inconsistencies are 
evolutionary necessities in that development uncertainties 
are often purposely left ambiguous to not over-constrain 
the design [4].  

Our consistency-checking approach separates consis-
tent transformation from consistency comparison. Consis-
tent transformation ensures consistency via well-defined 
transformation steps where source diagrams are trans-
formed into target diagrams in a manner that guarantees 
consistency. Consistency comparison, on the other hand, 
detects inconsistencies via well-defined comparison steps 
where source diagrams are compared to target diagrams to 
identify them. Consistent transformation enables “continu-
ity” by bridging modeling information across the model 
barrier but it comes at the expense of evolutionary free-
dom in that re-transformation may potentially overwrite 
modifications. The alternative, consistency comparison, 
allows inconsistencies to be detected after they have been 
introduced and has the advantage that models can evolve 
separately. Comparison comes at the expense of model 
continuity in that consistency detection is not equivalent 
to consistency resolution (fixing an inconsistency is a 
form of model continuity).  

Our approach – VIEWINTEGRA – combines the active 
nature of consistent transformation with the passive nature 
of consistency comparison. We make use of consistent 
transformation to convert source diagrams into the dia-
gram type of the target so that transformations of the 
source diagrams are conceptually close to target diagrams 
they need to be compared with. We then use consistency 
comparison to compare the transformation of the source 
diagram with the target diagram. It must be emphasized 
that we do not use “third-party diagrams” to validate the 
consistency of UML diagrams. If we would like to com-
pare a sequence diagram with a class diagram then we 
would either transform the sequence diagram into an “in-
terpreted” class diagram followed by comparing the inter-
preted class diagram with the existing one (Figure 1 (b)); 
or we would transform the class diagram into an inter-

preted sequence diagram fol-
lowed by comparing the se-
quence diagrams (Figure 1 (c)).  

Our approach “inherits” in-
creased model continuity from 
consistent transformation by 
bridging model information 
across the model barrier; and our 

approach “inherits” evolutionary consistency from consis-
tency comparison by allowing inconsistencies to exist in 
models. If no single transformation method can convert a 
source diagram conceptually close to a target diagram 
then transformation methods may also be applied in series 
or in parallel (Figure 1 (d)). If no set of transformation 
methods yields comparable diagrams and no direct com-
parison is supported (Figure 1 (a)) then automated consis-
tency checking is not possible. 
 
3. Heterogeneous Transformation 
 

For consistency checking we need transformation 
methods to bridge model information between all diagram 
pairs. Fortunately, it is not important in what direction to 
transform; it is not significant whether “A” is transformed 
to “B” or vice versa since A=B is equivalent to B=A. De-
spite this, a brute force approach to heterogeneous trans-
formation (meaning the transformation between all dia-
gram pairs) does not scale. Figure 2 shows six diagram 
types like statechart models, class models, or object mod-
els. Since those diagrams can be used to describe systems 
at different levels of abstraction, we have 11 groups of 
diagrams at our disposal (or more if additional levels of 
abstraction are considered). To ensure consistency, we 
thus require 55 transformation methods (“n*(n-1)/2” 
where “n” stands for the number of diagrams). We under-
stand a transformation method to be a technique that con-
verts one diagram type to another diagram type (i.e., con-
vert sequence diagrams into class diagrams). A “brute 
force” method to consistency checking thus causes a tre-
mendous overhead. Note that this non-scalability applies 
equally to comparison since 55 comparisons methods are 
needed to perform consistency checking on the 11 given 
models.  

On first glance, diagram transformation appears de-
pendent on the types of diagrams transformed. For in-
stance, abstracting a class diagram may seem different 
from abstracting a statechart diagram. Although this ob-
servation is generally true, we did find that diagrams can 
be grouped into categories and transforming between 
those categories often involves similar techniques. Figure 
2 depicts the three major dimensions we identified, going 
from specific to generic (e.g., object to class), from behav-
ior to structure (e.g., sequence to object), and from low-
level to high-level (e.g., low-level class to high-level 
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class). All types of diagrams (and models) we analyzed 
(including some outside the UML domain such as 
C2SADEL [5]) can be positioned relative to these three 
dimensions.  

The first of the three dimensions in Figure 2 is the low-
level/high-level dimension. This dimension denotes the 
level of abstraction of diagrams. For instance an architec-
tural model is usually more abstract (high-level) than a 
design model. The generic-specific dimension denotes 
universal validity of information. For instance, class dia-
grams describe generic relationships whereas sequence 
diagrams describe examples. The behavior-structure di-
mension denotes the extent in which behavior is dictated 
by structure. For instance, a sequence diagram describes 
interactions in a step-by-step manner including their or-
dering whereas a class diagram only indicates the exis-
tence of interactions but does not describe when they hap-
pen. Having three dimensions of diagrams implies four 
types of transformation axes: Abstraction to capture con-
version from low-level to high-level, Structuralization to 
capture conversion from behavior to structure, Generali-
zation to capture conversion from specific to generic, and, 
Translation to capture other forms of conversions (i.e., as 
in the translation of sequence to collaboration diagrams). 

These dimensions denote “natural boundaries” between 
diagrams. Our observation about the existence of those 
boundaries is not surprising since others have made simi-
lar distinctions in the past [1,3,4]. However, we took these 
boundaries and dimensions a step further and build a 
transformation and comparison framework around them. 
Our approach only requires 10 transformation methods, a 
small subset of the 55 potential transformation methods 
between all diagrams depicted in Figure 2. Nonetheless, 
our 10 transformation methods still support the compari-

son between all diagram pairs and it 
facilitates reuse which improves scal-
ability.  

 

4. Semantic Implications 
 
Most obviously, our framework 

reduces the entry barrier to compre-
hensive, automated consistency 
checking by only requiring the auto-
mation of 10 transformation methods 
as opposed to 55. Our approach also 
does not create the overhead of using 
third-party, non-standard languages; 
although it is possible to do so if 
needed. And, our approach is useful 
beyond consistency checking since 
transformation methods can also be 
used for other automation purposes 
(i.e., forward and reverse engineer-
ing).  

 
4.1 Transformations for Comprehensive Comparison 

 
Thus far, we only discussed 10 transformation methods 

but we left it open how to do pair-wise consistency check-
ing between all diagram types which normally require 55 
transformation methods. To enable these additional trans-
formations, we use serial transformation. For instance, if 
we wish to compare a sequence diagram with the a class 
diagram then we need to structuralize the sequence dia-
gram into an object diagram followed by generalizing that 
object diagram into a class diagram (serial); and we need 
to generalize the sequence diagram into a statechart dia-
gram followed by structuralizing that statechart diagram.  

Ideally, both transformation paths should yield the 
same results and thus one transformation path (i.e., se-
quence to object to class diagram) should be sufficient to 
compare sequence diagrams with class diagrams. In prac-
tice, we find that object diagrams and statechart diagrams 
individually are not ideal “intermediate representations” to 
bridge the gap between sequence and class diagrams. 
Thus, there is a benefit in following both transformation 
paths. For consistency checking this implies that two in-
terpretations are generated if a sequence diagrams is com-
pared to a class diagrams. For comparison this implies 
that both interpretations have to be compared to the class 
diagram. 

Serial transformation not only increases the effective-
ness of our 10 transformation methods but also has the 
benefit of reuse. Recall that the example of sequence to 
class transformation generated intermediate statechart and 
object diagrams. These intermediate diagrams are needed 
for subsequent transformation(s) so that the sequence dia-
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gram becomes comparable to the class diagram; however, 
those intermediate diagrams can also be compared directly 
to other existing statechart and object diagrams if such 
should exist. Generating intermediate diagrams is there-
fore not a computational overhead but instead very useful 
for subsequent comparisons with other diagrams. This 
form of reuse would not be possible if all 55 required 
transformation methods were implemented independently. 

Despite the benefits, serial transformation does not en-
able the transformation of all diagram pairs. Given the 
uni-directional nature of most of our transformation meth-
ods, it is not possible to transform an object diagram into 
a statechart diagram or vice versa. To check for consis-
tency between them, we use parallel transformation 
(Figure 1 (d)). Parallel transformation looks for a common 
denominator for comparison. To compare object and 
statechart diagrams, we transform both of them into class 
diagrams and compare the resulting two class diagrams 
for consistency. Like with serial transformation, parallel 
transformation can use and produce reusable intermediate 
diagrams for other transformations and/or comparisons. 

 
4.2 Simplicity of Consistency Rules 
 

Comparison takes diagrams and compares them to 
identify differences. Comparison is supported by rules 
(inconsistency rules) that describe if and how much dia-
grams may differ. Violations of those rules indicate incon-
sistencies. Consistency rules supporting our framework 
are very simple since our framework always guarantees 
that diagrams are compared within a single diagram type. 
For instance, comparing a sequence diagram with a class 
diagram results in comparing class diagrams only – the 
original one and the transformation. This feature has an-
other desirable side effect: instead having to define incon-
sistency rules for class/sequence diagrams and for 
class/collaboration diagrams separately, VIEWINTEGRA 
uses the exact same rules for both because ultimately both 
sequence and collaboration diagrams are interpreted as 
class diagrams for comparison.  

 
5. Conclusion 
 

This paper presented the VIEWINTEGRA approach to 
consistency checking among UML diagrams. We pre-
sented a transformation framework and demonstrated its 
use in context of five UML diagram types (class, object, 
sequence, collaboration, and statechart diagrams). This 
paper particularly emphasized transformation-based con-
sistency checking without the need of third-party, inter-
mediate languages.  

Our approach uses transformation to bring models 
closer to one another in order to simply comparison. In-
stead of implementing 55 transformation methods for 

comparing 11 UML diagram types, our approach only 
needs a subset containing 10 transformation methods. This 
not only reduces the entry barrier for automated consis-
tency checking but it also enables reuse of interpretations 
during serial and parallel transformation. Separating trans-
formation from comparison also makes consistency-
checking rules simpler and less in numbers. Instead of 
defining 55 sets of consistency rules between 11 diagram 
types, our approach only defines 10 sets of consistency 
rules. It is therefore our observation that our approach 
improves the scalability of consistency checking without 
sacrificing usability. Our transformation framework can 
also be used for forward and reverse engineering. 

Currently five of the ten introduced transformation 
methods are automated and tool supported. Future work is 
to provide full automation and to integrate other types of 
diagrams. 
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