

Scalable Consistency Checking between Diagrams – The VIEWINTEGRA Approach

Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way, Suite 231

Marina Del Rey, CA 90292, USA
aegyed@ieee.org

Abstract

The Unified Modeling Language (UML) supports a
wide range of diagrams for modeling software develop-
ment concerns. UML diagrams are independent but con-
nected; their meta-model describes them under a common
roof. Despite the advances of UML, we found that the
problem of ensuring consistency between UML diagrams
has not been solved. In the past years, we have developed
an approach for automated consistency checking, called
VIEWINTEGRA. Our approach provides excellent support
for active (preventive) and passive (detective) consistency
checking. We make use of consistent transformation to
translate diagrams into interpretations and we use consis-
tency comparison to compare those interpretations to
other diagrams. Our approach was applied to a number
of applications where we found the separation of trans-
formation and comparison to be highly beneficial in ad-
dressing consistency-checking scalability & usability is-
sues. This paper introduces our UML-based transforma-
tion framework, discusses how it aids comparison, and
demonstrates how it improves consistency checking.

1. Introduction

Models and diagrams are useful in separating concerns
and handling complexity by providing different view-
points. Diagrams have in common that they break up
software development into smaller, more comprehensible
pieces utilizing a divide and conquer strategy. These
pieces are related in the system they describe and, com-
bined, they form a model description of a system [2].

The major drawback of “diagram-centric” software en-
gineering is that development concerns cannot be truly
investigated individually since they tend to affect one an-
other. If a set of issues about a software system is investi-
gated, each through its own set of diagrams then their
combined correctness requires that common assumptions
and definitions within those diagrams are recognized and
maintained in a consistent fashion. Consistency is compli-
cated by the very advantage of diagrams – their separa-
tion. Although the separation of diagrams is beneficial in

supporting separate concerns, it is also bad because it in-
duces duplication (redundancy) of model information.
Explicit mechanisms are required to ensure the consis-
tency of all redundant information across all diagrams; but
conceptual differences in meaning and language are bar-
rier to consistency checking and complicate matters.

This work introduces a transformation-based approach
to consistency checking. We discuss our approach in con-
text of various UML diagram types (i.e., class, sequence,
collaboration, object, statechart diagrams) at different
levels of abstraction (i.e., high-level versus low-level dia-
grams). Our approach, called VIEWINTEGRA, is primarily
aimed at detecting inconsistencies after they have been
introduced. We take the stance that software diagrams are
inherently ambiguous and inconsistencies often cannot be
avoided [2,4].

In this paper, we will emphasize the important nature
of transformation as a means of improving consistency-
checking scalability. It is our finding that consistency
checking between “n” diagrams does not require “n*n”
number of transformations and/or comparisons but sig-
nificantly fewer. It is also our finding that the separation
of transformation and comparison makes comparison rules
(consistency checking rules) simpler and less in numbers.
Furthermore, separate transformation methods can also be
used independently of consistency checking for reverse
engineering and other needs.

2. The VIEWINTEGRA Approach

Diagrams are self-contained in describing individual
aspects of software systems. No diagram is replaceable by
any other diagram but diagrams are not independent of
one another either. For instance, a sequence diagram de-
scribes interactions among objects whose types are
classes. A sequence diagram thus is not independent from
a class diagram. Similarly, a class diagram describes in-
teractions that must also be captured in refinements. Ab-
stract and refined diagrams are thus not independent from
one another. In fact there are mutual dependencies be-
tween most diagrams implying that there is substantial

Published in the Proceedings of the 16th IEEE International Conference on Automated Software Engineering (ASE),
San Diego, USA, November 2001, pp. forthcoming.

information redundancy. Unfortunately, redundancies
imply the possibility of inconsistencies.

In an ideal world, diagrams are tightly integrated to
avoid inconsistencies. In reality such tight integration is
infeasible and often impractical [2]. This is especially then
the case when redundancies are obscure and do not follow
simple one-to-one mappings. There are also non-technical
reasons in favor of allowing inconsistencies to happen.
For instance, there are situations where inconsistencies are
evolutionary necessities in that development uncertainties
are often purposely left ambiguous to not over-constrain
the design [4].

Our consistency-checking approach separates consis-
tent transformation from consistency comparison. Consis-
tent transformation ensures consistency via well-defined
transformation steps where source diagrams are trans-
formed into target diagrams in a manner that guarantees
consistency. Consistency comparison, on the other hand,
detects inconsistencies via well-defined comparison steps
where source diagrams are compared to target diagrams to
identify them. Consistent transformation enables “continu-
ity” by bridging modeling information across the model
barrier but it comes at the expense of evolutionary free-
dom in that re-transformation may potentially overwrite
modifications. The alternative, consistency comparison,
allows inconsistencies to be detected after they have been
introduced and has the advantage that models can evolve
separately. Comparison comes at the expense of model
continuity in that consistency detection is not equivalent
to consistency resolution (fixing an inconsistency is a
form of model continuity).

Our approach – VIEWINTEGRA – combines the active
nature of consistent transformation with the passive nature
of consistency comparison. We make use of consistent
transformation to convert source diagrams into the dia-
gram type of the target so that transformations of the
source diagrams are conceptually close to target diagrams
they need to be compared with. We then use consistency
comparison to compare the transformation of the source
diagram with the target diagram. It must be emphasized
that we do not use “third-party diagrams” to validate the
consistency of UML diagrams. If we would like to com-
pare a sequence diagram with a class diagram then we
would either transform the sequence diagram into an “in-
terpreted” class diagram followed by comparing the inter-
preted class diagram with the existing one (Figure 1 (b));
or we would transform the class diagram into an inter-

preted sequence diagram fol-
lowed by comparing the se-
quence diagrams (Figure 1 (c)).

Our approach “inherits” in-
creased model continuity from
consistent transformation by
bridging model information
across the model barrier; and our

approach “inherits” evolutionary consistency from consis-
tency comparison by allowing inconsistencies to exist in
models. If no single transformation method can convert a
source diagram conceptually close to a target diagram
then transformation methods may also be applied in series
or in parallel (Figure 1 (d)). If no set of transformation
methods yields comparable diagrams and no direct com-
parison is supported (Figure 1 (a)) then automated consis-
tency checking is not possible.

3. Heterogeneous Transformation

For consistency checking we need transformation
methods to bridge model information between all diagram
pairs. Fortunately, it is not important in what direction to
transform; it is not significant whether “A” is transformed
to “B” or vice versa since A=B is equivalent to B=A. De-
spite this, a brute force approach to heterogeneous trans-
formation (meaning the transformation between all dia-
gram pairs) does not scale. Figure 2 shows six diagram
types like statechart models, class models, or object mod-
els. Since those diagrams can be used to describe systems
at different levels of abstraction, we have 11 groups of
diagrams at our disposal (or more if additional levels of
abstraction are considered). To ensure consistency, we
thus require 55 transformation methods (“n*(n-1)/2”
where “n” stands for the number of diagrams). We under-
stand a transformation method to be a technique that con-
verts one diagram type to another diagram type (i.e., con-
vert sequence diagrams into class diagrams). A “brute
force” method to consistency checking thus causes a tre-
mendous overhead. Note that this non-scalability applies
equally to comparison since 55 comparisons methods are
needed to perform consistency checking on the 11 given
models.

On first glance, diagram transformation appears de-
pendent on the types of diagrams transformed. For in-
stance, abstracting a class diagram may seem different
from abstracting a statechart diagram. Although this ob-
servation is generally true, we did find that diagrams can
be grouped into categories and transforming between
those categories often involves similar techniques. Figure
2 depicts the three major dimensions we identified, going
from specific to generic (e.g., object to class), from behav-
ior to structure (e.g., sequence to object), and from low-
level to high-level (e.g., low-level class to high-level

something
like B

tra
ns

for
m

A B

co
m

pa
re

A

A

C

B

C

A

co
m

pa
re

compare

transform

B

tra
ns

fo
rm

tra
ns

fo
rm

Derived

User
Defined

something
like

something
like

something
like

map map mapA Bmap

compare

a) b) c) d)
Figure 1. Model Transformation, Mapping, and Comparison

class). All types of diagrams (and models) we analyzed
(including some outside the UML domain such as
C2SADEL [5]) can be positioned relative to these three
dimensions.

The first of the three dimensions in Figure 2 is the low-
level/high-level dimension. This dimension denotes the
level of abstraction of diagrams. For instance an architec-
tural model is usually more abstract (high-level) than a
design model. The generic-specific dimension denotes
universal validity of information. For instance, class dia-
grams describe generic relationships whereas sequence
diagrams describe examples. The behavior-structure di-
mension denotes the extent in which behavior is dictated
by structure. For instance, a sequence diagram describes
interactions in a step-by-step manner including their or-
dering whereas a class diagram only indicates the exis-
tence of interactions but does not describe when they hap-
pen. Having three dimensions of diagrams implies four
types of transformation axes: Abstraction to capture con-
version from low-level to high-level, Structuralization to
capture conversion from behavior to structure, Generali-
zation to capture conversion from specific to generic, and,
Translation to capture other forms of conversions (i.e., as
in the translation of sequence to collaboration diagrams).

These dimensions denote “natural boundaries” between
diagrams. Our observation about the existence of those
boundaries is not surprising since others have made simi-
lar distinctions in the past [1,3,4]. However, we took these
boundaries and dimensions a step further and build a
transformation and comparison framework around them.
Our approach only requires 10 transformation methods, a
small subset of the 55 potential transformation methods
between all diagrams depicted in Figure 2. Nonetheless,
our 10 transformation methods still support the compari-

son between all diagram pairs and it
facilitates reuse which improves scal-
ability.

4. Semantic Implications

Most obviously, our framework

reduces the entry barrier to compre-
hensive, automated consistency
checking by only requiring the auto-
mation of 10 transformation methods
as opposed to 55. Our approach also
does not create the overhead of using
third-party, non-standard languages;
although it is possible to do so if
needed. And, our approach is useful
beyond consistency checking since
transformation methods can also be
used for other automation purposes
(i.e., forward and reverse engineer-
ing).

4.1 Transformations for Comprehensive Comparison

Thus far, we only discussed 10 transformation methods

but we left it open how to do pair-wise consistency check-
ing between all diagram types which normally require 55
transformation methods. To enable these additional trans-
formations, we use serial transformation. For instance, if
we wish to compare a sequence diagram with the a class
diagram then we need to structuralize the sequence dia-
gram into an object diagram followed by generalizing that
object diagram into a class diagram (serial); and we need
to generalize the sequence diagram into a statechart dia-
gram followed by structuralizing that statechart diagram.

Ideally, both transformation paths should yield the
same results and thus one transformation path (i.e., se-
quence to object to class diagram) should be sufficient to
compare sequence diagrams with class diagrams. In prac-
tice, we find that object diagrams and statechart diagrams
individually are not ideal “intermediate representations” to
bridge the gap between sequence and class diagrams.
Thus, there is a benefit in following both transformation
paths. For consistency checking this implies that two in-
terpretations are generated if a sequence diagrams is com-
pared to a class diagrams. For comparison this implies
that both interpretations have to be compared to the class
diagram.

Serial transformation not only increases the effective-
ness of our 10 transformation methods but also has the
benefit of reuse. Recall that the example of sequence to
class transformation generated intermediate statechart and
object diagrams. These intermediate diagrams are needed
for subsequent transformation(s) so that the sequence dia-

statechart
model

object
model

class
model

C2SADEL
model

Translation

Generalization Generalization

Structuralization

Structuralization

statechart
model

object
model

class
model

Generalization Generalization

Structuralization

Structuralization

Abstraction

Abstraction Abstraction

Abstraction

specific

generic

behavior structure

low-level

high-level

collabor.
modelsequence

model

collabor.
modelsequence

model

Translation

Translation

Abstraction
(e.g., class to
class Diagram

Generalization
(e.g., object to class
diagram)

Translation
(e.g., sequence
to collaboratio
diagram

Structuralization
(e.g., state diagram
to class diagram)

Figure 2. Transformation Framework for Scalable Comparison

gram becomes comparable to the class diagram; however,
those intermediate diagrams can also be compared directly
to other existing statechart and object diagrams if such
should exist. Generating intermediate diagrams is there-
fore not a computational overhead but instead very useful
for subsequent comparisons with other diagrams. This
form of reuse would not be possible if all 55 required
transformation methods were implemented independently.

Despite the benefits, serial transformation does not en-
able the transformation of all diagram pairs. Given the
uni-directional nature of most of our transformation meth-
ods, it is not possible to transform an object diagram into
a statechart diagram or vice versa. To check for consis-
tency between them, we use parallel transformation
(Figure 1 (d)). Parallel transformation looks for a common
denominator for comparison. To compare object and
statechart diagrams, we transform both of them into class
diagrams and compare the resulting two class diagrams
for consistency. Like with serial transformation, parallel
transformation can use and produce reusable intermediate
diagrams for other transformations and/or comparisons.

4.2 Simplicity of Consistency Rules

Comparison takes diagrams and compares them to
identify differences. Comparison is supported by rules
(inconsistency rules) that describe if and how much dia-
grams may differ. Violations of those rules indicate incon-
sistencies. Consistency rules supporting our framework
are very simple since our framework always guarantees
that diagrams are compared within a single diagram type.
For instance, comparing a sequence diagram with a class
diagram results in comparing class diagrams only – the
original one and the transformation. This feature has an-
other desirable side effect: instead having to define incon-
sistency rules for class/sequence diagrams and for
class/collaboration diagrams separately, VIEWINTEGRA
uses the exact same rules for both because ultimately both
sequence and collaboration diagrams are interpreted as
class diagrams for comparison.

5. Conclusion

This paper presented the VIEWINTEGRA approach to
consistency checking among UML diagrams. We pre-
sented a transformation framework and demonstrated its
use in context of five UML diagram types (class, object,
sequence, collaboration, and statechart diagrams). This
paper particularly emphasized transformation-based con-
sistency checking without the need of third-party, inter-
mediate languages.

Our approach uses transformation to bring models
closer to one another in order to simply comparison. In-
stead of implementing 55 transformation methods for

comparing 11 UML diagram types, our approach only
needs a subset containing 10 transformation methods. This
not only reduces the entry barrier for automated consis-
tency checking but it also enables reuse of interpretations
during serial and parallel transformation. Separating trans-
formation from comparison also makes consistency-
checking rules simpler and less in numbers. Instead of
defining 55 sets of consistency rules between 11 diagram
types, our approach only defines 10 sets of consistency
rules. It is therefore our observation that our approach
improves the scalability of consistency checking without
sacrificing usability. Our transformation framework can
also be used for forward and reverse engineering.

Currently five of the ten introduced transformation
methods are automated and tool supported. Future work is
to provide full automation and to integrate other types of
diagrams.

Acknowledgements

We wish to thank Dave Wile, Nenad Medvidovic,
Barry Boehm, Bashar Nuseibeh, and all anonymous re-
viewers for insightful comments and discussions. This
work was supported by DARPA under agreements
F30602-00-C-0218, F30602-99-1-0524, and F30602-00-
C-0200.

References

[1] Abi-Antoun, M. and Medvidovic, N., "Enabling the

Refinement of a Software Architecture into a De-
sign," Proceedings of the 2nd International Confer-
ence on the Unified Modeling Language (UML), Fort
Collins, CO, Oct. 1999.

[2] Balzer, R., "Tolerating Inconsistency," Proceedings
of 13th International Conference on Software Engi-
neering (ICSE-13), pp. 158-165, May 1991.

[3] Moriconi, M., Qian, X., and Riemenschneider, R. A.,
Correct Architecture Refinement IEEE Transactions
on Software Engineering, vol. 21, pp. 356-372, Apr,
1995.

[4] Nuseibeh, B., A Multi-Perspective Framework for
Method Integration 1994. Imperial College of Sci-
ence, Technology and Medicine.

[5] Taylor, R. N., Medvidovic, N., Anderson, K. N.,
Whitehead, E. J. Jr., Robbins, J. E., Nies, K. A.,
Oreizy, P., and Dubrow, D. L., A Component- and
Message-Based Architectural Style for GUI Software
IEEE Transactions on Software Engineering, vol.
22, pp. 390-406, 1996.

